Describe the workings behind the Photoelectric effect

In any metal, there are free surface electrons. For these electrons to escape from the surface of a metal, they require a specific amount of energy, called the 'Work Function'. There are many sources of this energy, but we will focus on just one - electromagnetic energy. Traditionally, EM energy was considered as a transverse wave, similar to that of water waves, but in the Quantum model, the energy is split into small packets, called photons.
These photons behave similarly to particles, and when they come into contact with a metal surface, they interact with only one surface electron. They transfer all of their energy to that one electron, and if this energy is larger than the Work Function (as mentioned previously) the electron will escape the metal as a 'photoelectron' (hence photoelectric effect). Since only one photon can interact with each electron, a greater number of photons incident on the metal per second has no effect. An increase in the EM photon energy means that the released electrons have more energy left over after being emitted, in the form of Kinetic energy.

TR
Answered by Toby R. Physics tutor

1951 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?


In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?


People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning