Describe the workings behind the Photoelectric effect

In any metal, there are free surface electrons. For these electrons to escape from the surface of a metal, they require a specific amount of energy, called the 'Work Function'. There are many sources of this energy, but we will focus on just one - electromagnetic energy. Traditionally, EM energy was considered as a transverse wave, similar to that of water waves, but in the Quantum model, the energy is split into small packets, called photons.
These photons behave similarly to particles, and when they come into contact with a metal surface, they interact with only one surface electron. They transfer all of their energy to that one electron, and if this energy is larger than the Work Function (as mentioned previously) the electron will escape the metal as a 'photoelectron' (hence photoelectric effect). Since only one photon can interact with each electron, a greater number of photons incident on the metal per second has no effect. An increase in the EM photon energy means that the released electrons have more energy left over after being emitted, in the form of Kinetic energy.

TR
Answered by Toby R. Physics tutor

2132 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the process of nuclear fission is induced


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.


What is the maximum height a pole vaulter could reach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning