Describe the workings behind the Photoelectric effect

In any metal, there are free surface electrons. For these electrons to escape from the surface of a metal, they require a specific amount of energy, called the 'Work Function'. There are many sources of this energy, but we will focus on just one - electromagnetic energy. Traditionally, EM energy was considered as a transverse wave, similar to that of water waves, but in the Quantum model, the energy is split into small packets, called photons.
These photons behave similarly to particles, and when they come into contact with a metal surface, they interact with only one surface electron. They transfer all of their energy to that one electron, and if this energy is larger than the Work Function (as mentioned previously) the electron will escape the metal as a 'photoelectron' (hence photoelectric effect). Since only one photon can interact with each electron, a greater number of photons incident on the metal per second has no effect. An increase in the EM photon energy means that the released electrons have more energy left over after being emitted, in the form of Kinetic energy.

Answered by Toby R. Physics tutor

1541 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the process of a capacitor charging.


This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.


What is the de Broglie wavelength of a dust particle that has a mass of 1e-10 kg and a velocity of 0.05m/s?


A uniform plank of wood of mass 32 kg and length 4.0 m is used to cross a ditch. In the ditch is a rock, which is used to support the plank horizontally 0.80 m from one end. The other end is supported by the bank. Calculate the rock's supporting force.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences