Prove the identity: sin^2(x)+cos^2(x) = 1

This is one of the most commonly used A level identities which can be proved using only GCSE maths!

Firstly, take an arbitrary right angle triangle with Hypotenuse h, and angle x between h and the adjacent side. (Diagram recommended)

Label the triangle in terms of h and x using simple SOHCAHTOA:

Hypotenuse = h

Adjacent = hcos(x)

Opposite = hsin(x)

Now, using everyone’s favourite theorem (Pythagorean):

h^2 = h^2cos^2(x)+h^2sin^2(x)

Factoring out h^2 on the right hand side:

h^2 = h^2(cos^2(x)+sin^2(x))

Dividing both sides by h^2 to make it explicit:

1 = cos^2(x)+sin^2(x)

Answered by Sean O. Maths tutor

3575 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

|2x+1|=3|x-2|


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


Differentiate, y = 2x^3 + 2/x + 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences