Prove the identity: sin^2(x)+cos^2(x) = 1

This is one of the most commonly used A level identities which can be proved using only GCSE maths!

Firstly, take an arbitrary right angle triangle with Hypotenuse h, and angle x between h and the adjacent side. (Diagram recommended)

Label the triangle in terms of h and x using simple SOHCAHTOA:

Hypotenuse = h

Adjacent = hcos(x)

Opposite = hsin(x)

Now, using everyone’s favourite theorem (Pythagorean):

h^2 = h^2cos^2(x)+h^2sin^2(x)

Factoring out h^2 on the right hand side:

h^2 = h^2(cos^2(x)+sin^2(x))

Dividing both sides by h^2 to make it explicit:

1 = cos^2(x)+sin^2(x)

SO
Answered by Sean O. Maths tutor

4379 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = x sin(x)


2 equations intersect each other, y = x + 2 and y = x^2. Find the area of the shaded region between the points of intersection giving your answer to 3 significant figures. (shaded region will be shown)


Integration of ln(x)


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning