Explain why the second ionisation energy of boron is higher than the first ionisation energy of boron.

Boron is the 5th element in the periodic table, and has an electron configuration 1s22s22p1. The first ionization energy of Boron is the energy required to remove the single 2p electron, while the second ionization energy of boron is the energy required to remove one of the two 2s electron. If we already have removed the 2p electron, then we are left with a positively charged Boron ion, and it is harder to remove another electron from an already positively charged species. Moreover, the 2s electrons are closer to the nucleus and are held in the atom with a greater force. That is why the second ionization energy of Boron is higher.

Answered by Adelina I. Chemistry tutor

33072 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is a buffer, and how does it respond to the addition of acid or alkali?


Why is phenylamine a weaker organic base than ethylamine?


Flask Q (volume = 1.00 x 103 cm3 ) is filled with ammonia (NH3) at 102 kPa and 300 K. Calculate the mass of ammonia in flask Q. (Gas constant R = 8.31 J K−1 mol−1 )


What is meant by terms 'saturated' and 'unsaturated' when applied to alkanes and alkenes? Describe a chemical test to distinguish between the liquids hexane and hexene.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences