Sketch the locus of z on an Argand diagram if arg[(z-5)/(z-3)] = π/6

Rewrite as arg(z-5) - arg(z-3) = π/6 and let arg(z-5) = b and arg(z-3) = a, so that b-a = π/6Since we know that each argument makes a half line (starting at (3,0) for angle a, (5,0) for angle b) the half lines must intersect at a point P which is on the locus of z. The angle formed by this intersection must be equal to b-a = π/6 since the exterior angle in a triangle (in this case b) is equal to the sum of the interior angles (in this case a and π/6).We know from circle theorems that the angles subtended at the circumference in the same segment are always equal. Hence we can deduce that since the angle formed by the intersection is constant (equal to π/6) as b and a both vary, the locus of z must be an arc of a circle from x=3 to x=5 for y>0 (since the angle is positive).

Related Further Mathematics A Level answers

All answers ▸

Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences