Expand and simplify (x+1)(2x+3).

We first expand the first set of brackets by multiplying each element of it by the second set of brackets so (x + 1)(2x + 3) = (x)(2x + 3) + (1)(2x + 3) = x(2x + 3) + (2x + 3). We can then expand out the first set of brackets brackets to get x(2x + 3) = 2x2 + 3x. The second set of brackets needs no expanding as there is nothing to multiply it by so we simply remove these brackets. This gives us (x + 1)(2x + 3) = 2x2 + 3x + 2x + 3. We can then simplify this by adding together the x and the 2x and the x is raised to the same power in both. This gives us (x + 1)(2x + 3) = 2x2 + 5x + 3.

ML
Answered by Matthew L. Maths tutor

9278 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Integrate ∫_(-1)^1 3/√(x+2) dx using the substitution u x+2


For all values of x, f(x) = (x + 1)^2 and g(x) = 2(x-1). Show that gf(x) = 2x(x + 2) and find g^-1(7)


How do you use the completing the square method to solve a quadratic equation?


Expand and simplify (3 + √ 2)(5 – √ 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning