Expand and simplify (x+1)(2x+3).

We first expand the first set of brackets by multiplying each element of it by the second set of brackets so (x + 1)(2x + 3) = (x)(2x + 3) + (1)(2x + 3) = x(2x + 3) + (2x + 3). We can then expand out the first set of brackets brackets to get x(2x + 3) = 2x2 + 3x. The second set of brackets needs no expanding as there is nothing to multiply it by so we simply remove these brackets. This gives us (x + 1)(2x + 3) = 2x2 + 3x + 2x + 3. We can then simplify this by adding together the x and the 2x and the x is raised to the same power in both. This gives us (x + 1)(2x + 3) = 2x2 + 5x + 3.

Answered by Matthew L. Maths tutor

7027 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following pair of simultaneous equations: 1. 3x + 2y = 9 2. 6x + 5y = 21


The graph of y = x^2 – 1 is translated 3 units to the left to give graph A.The equation of graphA can be written in the form y=x^2 +bx+c Work out the values of b and c.


Find the roots of the quadratic equation 2x^2 - 15x - 8


If a=2 and b=3 , find the value of 2(a−b)+3(a+b)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences