Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)

First, we must recognise that the integral is written as a product of two functions which cannot be directly integrated, therefore a trigonometric identity must be used to express this a single function. Since both functions have the same value within their brackets (3x) and is the product of sine and cosine, we can use the sine double angle formula to express the integral in terms of sine only. Recall that the double angle formula for sine is; sin(2x)=2sin(x)cos(x). Therefore sin(3x)cos(3x) can be written as (1/2)sin(6x).This is then a simple trig integral using the reverse chain rule and remembering that the integral of sine is -cosine; ∫(1/2)sin(6x)dx= -(1/12)cos(6x) + c. Since this is an indefinite integral, we must remember to add the arbitrary constant, c, onto the end. We can always check to see if this is correct by differentiating our answer to see if we get the initial integral.

Answered by Leon B. Maths tutor

11511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....


How do you do integration by parts?


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


Differentiate y = x(x+3)^4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences