The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.

First I would find the value of t at Point P - I would equate the x equation to 4(3)^1/2 and the y equation to 15/2. This would give me (Px,Py). After this I would then find dy/dt, and dx/dx by differentiating the two equations with respect to t. We can then find dy/dx by multiplying dy/dt by dt/dx ( we obtain dt/dx by finding the reciprocal of dx/dt ). With this we have an equation for dy/dx , now all we have to is substitue the value of t we found in the beginning to obtain dy/dx.

Answered by Arjun B. Maths tutor

3777 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Prove by contradiction that there is an infinite number of prime numbers.


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences