A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.

x2 +2xy–3y2+16=0Differentiate the terms:x2 gives 2x2xy is differentiated by the product rule: vu' +v'u Make v = 2x and u = y, which gives 2x(dy/dx) + 2y3y2 gives 6y(dy/dx)16 gives 0.Therefore we have the equation: 2x + 2x(dy/dx) + 2y - 6y(dy/dx) = 0Now collect like terms: 6y(dy/dx) - 2x(dy/dx) = 2x + 2yFactor out dy/dx: dy/dx = (2x+2y)/(6y-2x)The question asks for points where dy/dx = 0, so substituting this in gives: 0 = (2x+2y)/(6y-2x) 0 = 2x + 2y y = -xNow to find the points on the curve where dy/dx is 0, we know y=-x and so substituting this into the original equation gives: x2 + 2x(-x) - 3(-x)2 + 16 = 0 x2 - 2x2 - 3x2 + 16 = 0 4x2 = 16 x2 = 4 x = (+/-) 2 Therefore y = (-/+) 2And now we have our answer, the coordinates are (2,-2) and (-2,2)

Answered by Dilan A. Maths tutor

10150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


How do I differentiate implicitly?


Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


How do I differentiate sin^2(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences