The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Work out the area of the triangle.

Consider a right angled triangle, it has perimeter of 72cm. Let's label the three sides a, b and c.Therefore, a + b + c = 72cm.Also, we know that a:b:c = 3:4:5Therefore we can say that a = 3x, b = 4x, c = 5x.Substituting this into the original equation we get:3x + 4x + 5x = 7212x = 72, therefore x = 6.So the sides a, b and c have length 18cm, 24cm and 30cm respectively.Now we can find the area A, which is A = 0.5a*b for a right angled triangle.This gives A = 0.5 * 18 * 24 = 216cm2

Answered by Dilan A. Maths tutor

2429 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simulaneous Equations: 5x + y = 21, x - 3y = 9


Solve 67x – 5 = 12x + 13


b)You are given g(x) = ax + b; You are also given that g(0) = 4 and g(1) = - 6; Find the value of a and the value of b


How do i factorise 20 + 10x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences