Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

Answered by Dojcin D. Physics tutor

6565 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?


What are the different classifications of sub-atomic particles?


What is the difference between potential energy and potential?


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences