Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

Answered by Dojcin D. Physics tutor

6657 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


Electrons moving in a beam have the same de Broglie wavelength as protons in a separate beam moving at a speed of 2.8 × 10^4 m/s . What is the speed of the electrons?


Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.


A hot air balloon is travelling at a speed of 5.0m/s at an angle of 60.0 degrees up from the horizontal. Find the vertical and horizontal components.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences