Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

Answered by Dojcin D. Physics tutor

6747 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


Calculate the temperature rise of a mass due to energy transfer over time.


Atmospheric Pressure is about 1.0x10^5 Pa. What is the downward force of the air on a desktop of surface area 1m^2?


What is the 'centre of gravity' of an object and how do I calculate it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences