Show Maxwell's equations in free space satisfy the wave equation

Maxwell's equations in free space:

∇ . E = 0

= -B/t

∇ . B = 0

∇ B = (1/c2)(∂E/t)

The wave equation: 

2(1/c2)(2U/t2)

If we take the curl of ∇ E, we get ∇ x(∇ E) = -(/t)∇ B

Using the vector formula a×(b×c) = b(a· c)−c(a·b), we can expand the left hand side to: ∇(∇ . E) - E(∇.∇)

Since ∇.E = 0, this becomes -2-(/t)∇ B

As ∇ B = (1/c2)(∂E/t), we have -2-(/t)(1/c2)(∂E/t)

Thus, 2(1/c2)(2E/t2) which shows that Maxwell's equations satisfy the wave equation. A similar process can be applied to B

Answered by Dojcin D. Physics tutor

6325 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the equivalence principle of General Relativity and what does it mean?


A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?


You are in a vacuum chamber, and you drop a feather and a bowling ball (initially at rest) from a great height. Which will hit the ground first?


How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences