Find the exact solution to: ln(x) + ln(7) = ln(21)

Log rules:

log(a) + log(b) = log(ab)

so, in this case, we must find x such that 7x = 21

thus x = 3

similarly, log(a) - log(b) = log(a/b)

rearranging the original equation we get:

ln(x) = ln(21) - ln(7)

so x = 21/7 = 3

Answered by Bryan P. Maths tutor

5957 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule and how is it used?


How do you solve a Differential equation using integrating factors?


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences