Find the exact solution to: ln(x) + ln(7) = ln(21)

Log rules:

log(a) + log(b) = log(ab)

so, in this case, we must find x such that 7x = 21

thus x = 3

similarly, log(a) - log(b) = log(a/b)

rearranging the original equation we get:

ln(x) = ln(21) - ln(7)

so x = 21/7 = 3

Answered by Bryan P. Maths tutor

6324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi


Prove by induction that the nth triangle number is given by n(n+1)/2


Consider f(x)=x/(x^2+1). Find the derivative f'(x)


Integrate ⌠( xcos^2(x))dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences