Find the integral of xcos(2x) with respect to x

You can see that this question is asking you to do integration by parts. Remember that the integral of uv' is equal to uv - the integral of u'v. You want to find a u that gets easier when you differentiate it and a v' that's possible to integrate directly and doesn't get messier when you integrate it. In this case let u = x and v' = cos(2x). u' = 1 and v = sin(2x)/2. The integral of xcos(2x) = xsin(2x)/2 - the integral of sin(2x)/2Hence the integral of xcos(2x) = xsin(2x)/2 + cos(2x)/4 + c.

Answered by Krystian J. Maths tutor

7758 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences