Find the integral of xcos(2x) with respect to x

You can see that this question is asking you to do integration by parts. Remember that the integral of uv' is equal to uv - the integral of u'v. You want to find a u that gets easier when you differentiate it and a v' that's possible to integrate directly and doesn't get messier when you integrate it. In this case let u = x and v' = cos(2x). u' = 1 and v = sin(2x)/2. The integral of xcos(2x) = xsin(2x)/2 - the integral of sin(2x)/2Hence the integral of xcos(2x) = xsin(2x)/2 + cos(2x)/4 + c.

Answered by Krystian J. Maths tutor

8021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you express partial fractions of a proper fraction that has a denominator of (x-2)(x+1)^2


How do I determine the domain and range of a composite function, fg(x) ?


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences