Find the integral of xcos(2x) with respect to x

You can see that this question is asking you to do integration by parts. Remember that the integral of uv' is equal to uv - the integral of u'v. You want to find a u that gets easier when you differentiate it and a v' that's possible to integrate directly and doesn't get messier when you integrate it. In this case let u = x and v' = cos(2x). u' = 1 and v = sin(2x)/2. The integral of xcos(2x) = xsin(2x)/2 - the integral of sin(2x)/2Hence the integral of xcos(2x) = xsin(2x)/2 + cos(2x)/4 + c.

Answered by Krystian J. Maths tutor

8354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


What is integration by parts?


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences