Solve x^2 = 4(x-3)^2

First expand the bracket (x-3)2 separately to give x2 - 6x +9 Next multiply by the 4 outside the brackets to give 4x2 -24x +36 Now all the terms have been expanded you can collect the like terms in the equation x2 = 4x2 -24x +36 Bring the x2 to the right side of the equation to give 0 = 3x2 -24x +36 Divide this equation by 3, 0 = x2 -8x +12 (1) Factorise (1) by finding a pair of numbers that add to -8 and multiply to make 12. Both numbers need to be negative. -6 and -2 are the correct numbers. Therefore (x-2)(x-6) = 0 For this solution to equal 0 overall x must be equal to 2 or 6

Answered by Joe V. Maths tutor

3289 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Suppose you are given a rectangle where the length is equal to 2x+4 and its width is equal to 3x-2. Assuming that the perimeter is equal to 54 cm, what's the value of x?


Expand and simplify (x+5)(x+7)


Solve the simultaneous equations: 3x+2y=4 and 4x+5y=17


3^2 + 4^2 = x^2. Find x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences