Solve x^2 = 4(x-3)^2

First expand the bracket (x-3)2 separately to give x2 - 6x +9 Next multiply by the 4 outside the brackets to give 4x2 -24x +36 Now all the terms have been expanded you can collect the like terms in the equation x2 = 4x2 -24x +36 Bring the x2 to the right side of the equation to give 0 = 3x2 -24x +36 Divide this equation by 3, 0 = x2 -8x +12 (1) Factorise (1) by finding a pair of numbers that add to -8 and multiply to make 12. Both numbers need to be negative. -6 and -2 are the correct numbers. Therefore (x-2)(x-6) = 0 For this solution to equal 0 overall x must be equal to 2 or 6

Answered by Joe V. Maths tutor

2921 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simultaneous equations x2 +y2 =25 and y – 3x = 13


Solve the quadratic equation x^2 + 7x + 6 = 0


Solve the equation (2X + 3) / (X-4) - (2X - 8) / (2X + 1) = 1


3x+5y=7 and 9x+11y=13. Solve to find the values of x and y that satisfy both equations.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences