Answers>Maths>IB>Article

How do you perform implicit differentiation?

Implicit differentiation is used when the function you need to differentiate is not in the form y = f(x). For example: y4 + 3x2 - 10 + 2y2 = 4xThe first step is to differentiate each term of the equation with respect to x, using the above example:(d/dx)(y4) + (d/dx)(3x2) - (d/dx)(10) + (d/dx)(2y2) = (d/dx)(4x)You can then differentiate terms only involving x as normal. To differentiate a function of y with respect to x the chain rule must be applied. Using the example, this gives:(d/dy)(y4)(dy/dx) + 6x + (d/dy)(2y2)(dy/dx) = 4You can now differentiate the terms containing y with respect to y as normal:4y3(dy/dx) + 6x + 4y(dy/dx) = 4Now factor out (dy/dx):(dy/dx)(4y3 + 4y) = 4 - 6xDivide through to get the final answer:(dy/dx) = (4 - 6x) / (4y3 + 4y)

Answered by Toby F. Maths tutor

1124 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


Find cos4x in terms of cosx.


How do I derive the indefinite integral of sine?


The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences