differentiate x^3(1+x)^5 with respect for x

First we have to use the product rule, remember that if we have h(x)=f(x)g(x) then h'(x)=f'(x)g(x)+f(x)g'(x).So h'(x) = x^3D[(x+1)^5]+(x+1)^5D[x^3]Completing the unfinished derivatives,h'(x) = x^3[5(x+1)^4]+(x+1)^5[3x^2]Simplifies to.h'(x) = 5x^3(x+1)^4+3x^2(x+1)^5remember that we do the (x+1)^5 in the standard way. 

RL
Answered by Robert L. Maths tutor

4456 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 3x + 2y = 16 2x + 3y = 14


4x^2 + 8x + 3 can be written in the form a(x + b)^2 + c where a, b and c are whole numbers. Work out the values of a, b and c.


Solve x/2 + 3x/(x+) = 1


Solve x^3+20x^2=125x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning