First we have to use the product rule, remember that if we have h(x)=f(x)g(x) then h'(x)=f'(x)g(x)+f(x)g'(x).So h'(x) = x^3D[(x+1)^5]+(x+1)^5D[x^3]Completing the unfinished derivatives,h'(x) = x^3[5(x+1)^4]+(x+1)^5[3x^2]Simplifies to.h'(x) = 5x^3(x+1)^4+3x^2(x+1)^5remember that we do the (x+1)^5 in the standard way.