Answers>Maths>IB>Article

How do you integrate xln(x) between the limits of 0 and 2?

In order to answer this question you need to use integration by parts.Using the standard integration by parts formula: ∫u dv/dx dx = uv-∫v du/dx dx.Let:u=ln(x) v=(1/2)x2du/dx=1/x dv/dx=xTherefore we get:I=[1/2xln(x)-1/2∫xdx]20We now know how to integrate x. It becomes 1/2x2. Therefore the overall integral becomes:I=[1/2xln(x)]20-[1/4x2]20I=2ln(2)-1I=ln(4/e)I ≈ 0.386

LK
Answered by Lena K. Maths tutor

1607 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation (2 cos x) = (sin 2 x) , for 0 ≤ x ≤ 3π .


Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?


Given that y = -16x2​​​​​​​ + 160x - 256, find the value of x giving the maximum value of y, and hence give this maximum value of y.


Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning