What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34

The De Broglie wavelength equation is as follows:

λ=h/p

We know the value of Planck's constant h and so to calculate the wavelength all we need is the momentum, which is equal to mv.

The kinetic energy is given as 1 eV. Remember 1 eV is equal to 1.6 x 10-19 Joules. Using the equation for kinetic energy and the given mass of the electron we can determine the velocity of the electron as follows:

K.E = 0.5mv2

Which can be rearranged to be in terms of velocity v:

v = (2K.Em)0.5

By substituting in 1.6 x 10-19 for K.E and 9.11 x 10-31 for m we get v = 5.93 x 105 ms-1 (remember to keep the full non-rounded value in your calculator!)

Then using the initial equation for the wavelength and remembering p = mv, we can substitute in our values for h, m and v as follows:

λ = 6.33 x 10-34 / (9.11 x 10-31 x 5.93 x 105)  

λ = 1.17 x 10-9 m

Answered by David M. Physics tutor

94537 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A spacecraft needs to be slowed down from a speed of 96m/s to 8.2m/s. This can be done by firing an object as the spacecraft is moving. If the mass of the spacecraft is 6730kg and the object is 50kg, calculate the velocity of the ejected object.


A cannon ball is fired at an angle 30 degrees from horizontal from a cannon with a speed 30km/h, a) calculate how high the cannonball flies, and the horizontal distance from the cannon the cannonball reaches


Describe and explain how a constant rate of fission is maintained in a reactor by considering what events or sequence of events may happen to the released neutrons. (6 marks)


A 12V lamp, 36W is switched on for 1 hour. Find the energy supplied by the battery.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences