What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34

The De Broglie wavelength equation is as follows:

λ=h/p

We know the value of Planck's constant h and so to calculate the wavelength all we need is the momentum, which is equal to mv.

The kinetic energy is given as 1 eV. Remember 1 eV is equal to 1.6 x 10-19 Joules. Using the equation for kinetic energy and the given mass of the electron we can determine the velocity of the electron as follows:

K.E = 0.5mv2

Which can be rearranged to be in terms of velocity v:

v = (2K.Em)0.5

By substituting in 1.6 x 10-19 for K.E and 9.11 x 10-31 for m we get v = 5.93 x 105 ms-1 (remember to keep the full non-rounded value in your calculator!)

Then using the initial equation for the wavelength and remembering p = mv, we can substitute in our values for h, m and v as follows:

λ = 6.33 x 10-34 / (9.11 x 10-31 x 5.93 x 105)  

λ = 1.17 x 10-9 m

Answered by David M. Physics tutor

94362 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is a vector?


What is natural frequency and how is it associated with resonance?


Do heavier objects fall on the ground quicker?


A cricketer throws a ball vertically upwards so that the ball leaves his hands at a speed of 25 m/s. Calculate the maximum height reached by the ball, the time taken to reach max. height, and the speed of the ball when it is at 50% max. height.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences