A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.

The ramp is smooth, so the effects of friction can be ignored. Therefore, the potential energy lost by the ball is equivalent to the kinetic energy gained by the ball. The formula for kinetic energy is 1/2 * m * v^2 and the formula for gravitational potential energy is m * g * h.Therefore, equate these and find that 1/2 * v^2 = g * h, after cancelling out m. Solving for v gets a speed of 9.90 m/s.

CB
Answered by Cameron B. Maths tutor

4126 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Integrate e^x sinx


Differentiate the equation y = x^2 + 3x + 1 with respect to x.


Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences