Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0

Given = 2x(x2 – 1)5, show that
(a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined.

dy/dx= (2)(x2 – 1)5 + (2x)*5(x2– 1)4(2x)

dy/dx= (x2 – 1)4( 2(x2 – 1) + 20x2 )

g(x) = 2(x2 – 1) + 20x2

(b) Hence find the set of values of x for which dy/dx > 0
(x2 – 1)4( 2(x2 – 1) + 20x2 ) = 0

2(x2 – 1) + 20x2 = 0

22x2 - 2 = 0
2(11x2 - 1) = 0

11x2 = 1

x = +-√(1/11)

Answered by Abi I. Maths tutor

8702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4x^3 - 5/x^2 find dy/dx


How do I determine the domain and range of a composite function, fg(x) ?


Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


How would you differentiate f(x)=3x(2x-1)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences