Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0

Given = 2x(x2 – 1)5, show that
(a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined.

dy/dx= (2)(x2 – 1)5 + (2x)*5(x2– 1)4(2x)

dy/dx= (x2 – 1)4( 2(x2 – 1) + 20x2 )

g(x) = 2(x2 – 1) + 20x2

(b) Hence find the set of values of x for which dy/dx > 0
(x2 – 1)4( 2(x2 – 1) + 20x2 ) = 0

2(x2 – 1) + 20x2 = 0

22x2 - 2 = 0
2(11x2 - 1) = 0

11x2 = 1

x = +-√(1/11)

Answered by Abi I. Maths tutor

9214 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball of mass m moves towards a ball of mass km with speed u. The coefficient of restitution is 0. What is the final velocity if the first ball after the collision.


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


Differentiate the equation y = x^2 + 3x + 1 with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences