Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0

Given = 2x(x2 – 1)5, show that
(a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined.

dy/dx= (2)(x2 – 1)5 + (2x)*5(x2– 1)4(2x)

dy/dx= (x2 – 1)4( 2(x2 – 1) + 20x2 )

g(x) = 2(x2 – 1) + 20x2

(b) Hence find the set of values of x for which dy/dx > 0
(x2 – 1)4( 2(x2 – 1) + 20x2 ) = 0

2(x2 – 1) + 20x2 = 0

22x2 - 2 = 0
2(11x2 - 1) = 0

11x2 = 1

x = +-√(1/11)

Answered by Abi I. Maths tutor

9204 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the maximum/minimum of a function?


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


Solve x^2 + 8x +3 = 0 by completing the square.


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences