How do I differentiate f(x) = cos(x)/x?

To answer this question you need to use the quotient rule. dy/dx = (vu' - uv')/v2.

U = cos(x) which differentiates to -sin(x) so u'= -sin(x)

v = x so v' = 1

Therefore, dy/dx = ( -xsin(x) - cos(x) ) / x2

Answered by Ewan H. Maths tutor

10642 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences