Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

NK
Answered by Nimita K. Maths tutor

4046 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does adding a constant to a function's input (as in f(x-a)) shift the plot of the function along the x-axis?


What's the point of writing my mathematics well if I don't get extra marks for it?


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


How do you integrate the function cos^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning