Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

NK
Answered by Nimita K. Maths tutor

3852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the product rule and when do you use it?


How do you differentiate a function containing e?


How do I differentiate something of the form a^x?


Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning