Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

Answered by Nimita K. Maths tutor

3221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


A factory produces cartons each box has height h and base dimensions 2x, x and surface area A. Given that the capacity of a carton has to be 1030cm^3, (a) Using calculus find the value of x for which A is a minimum. (b) Calculate the minimum value of A.


How do you differentiate using the chain rule?


The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences