Find dy/dx when y=(3x-1)^10

We have to use the chain rule in this instance to find the differentiated value y=(3x-1)^10 suppose y=u^10 thus, dy/du = 10u^9 secondly: u=3x-1 du/dx=3 the chain rule suggests that dy/dx = du/dx *dy/du so that du cancels out Therefore, dy/dx = 10(3x-1)^9 * (3)Simplified, dy/dx = 30(3x-1)^9

NK
Answered by Nimita K. Maths tutor

3734 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


Given that cos(x) = 1/4, what is cos(2x)?


X


With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning