Use integration by parts to find the integral of xsinx, with respect to x

The integration by parts rule looks like this:

∫ u * v' dx = u * v - ∫ ( v * u' ) dx

Hence in this example, we want to make our u = x and v' = sinx

So we now need to work out what u' and v are:

u' = 1 which is the easier of the two; to work out v, we should integrate v' = sinx, this will give us v = -cosx

Hence if we now subsititute these into the equations, we will find that:

∫ xsinx dx = -xcosx - ∫ (-cosx) dx

= -xcosx - (-sinx) + C (where C is the constant of integration)

= sinx - xcosx + C

Answered by Toby S. Maths tutor

56310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences