Use integration by parts to find the integral of xsinx, with respect to x

The integration by parts rule looks like this:

∫ u * v' dx = u * v - ∫ ( v * u' ) dx

Hence in this example, we want to make our u = x and v' = sinx

So we now need to work out what u' and v are:

u' = 1 which is the easier of the two; to work out v, we should integrate v' = sinx, this will give us v = -cosx

Hence if we now subsititute these into the equations, we will find that:

∫ xsinx dx = -xcosx - ∫ (-cosx) dx

= -xcosx - (-sinx) + C (where C is the constant of integration)

= sinx - xcosx + C

TS
Answered by Toby S. Maths tutor

57974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


Find dy/dx when y = x(4x + 1)^1/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning