Find the 4th roots 6

Express 6 in the exponential form of (6*exp(2πin)), where n is an integertake the fourth root of this, remembering that taking the fourth root is taking to the power of 1/4, and by rules of indices the expression in the exponent must be divided by 4This gives (61/4 *exp(πin/2))Taking n = 0,1,2,3 gives four distinct roots, any larger n gives repeated roots

Related Further Mathematics A Level answers

All answers ▸

Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


Integrate cos(4x)sin(x)


Show that the square of any odd integer is of the form (8k+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences