differentiate arsinh(cosx))

let's start by defining y = arsinh(cos(x)). taking sinh of both sides gives sinhy = cosx. (since sinh(arsinhz) = z). Now we can differentiate both sides wrt x. The RHS differentiates to -sinx. We can use the chain rule for the LHS: d/dx = dy/dx *d/dy.so d/dx(sinhy) = dy/dx d/dy(sinhy) = dy/dx coshy. so dy/dx = -sinx/coshy. Now coshy = sqrt(1+(sinhy)^2) = sqrt(1+(cosx)^2).So dy/dx = -sinx/sqrt(1+(cosx)^2).

Related Further Mathematics A Level answers

All answers ▸

Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.


Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


Explain why the equation tanx + cotx = 1 does not have real solutions.


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences