Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3

The first step is to rearrange for x: we have x=2y-3now we can plug this into the equation of the ellipse: y^2+2(2y-3)^2=39y^2-24y+15 = 0we can use the quadratic formula to solve this equation:y = (24+-sqrt(24^2-4915))/2*9y = (24+-6)/18y= 5/3, 1Next we need to find the corresponding values of x which can be done by plugging the values of y into the expression we found for xat y=5/3 we have x = 1/3at y = 1 we have x = -1so the points of intersection are (1/3,5/3) and (-1,1)

Answered by Amit B. Maths tutor

2789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = (3x + 5)(4x - 7)


The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


Solve the Equation: 2ln(x)−ln (7x)=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences