Sketch the curve y=x^2-x-6

This curve is a quadratic due to the highest power in the equation being two. Quadratics typically have the shape of a U. Due to the coefficient of the x^2 term being positive, the curve is increasing for larger values of x. To find where the curve crosses the x-axis we equate the equation to zero and factorise. This results in (x-3)(x+2)=0 so the curve crosses the x-axis at either 3 or -2. This is because for the equation to be true, either x-3=0 or x+2=0. The graph crosses the y-axis when x=0, therefore at -6. The minimum of the graph can be found by completing the square. Hence y=(x-1/2)^2-25/4 and so the minimum occurs at (1/2,-25/4).

Answered by Masum A. Maths tutor

5293 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


make into a cartesian equation= x=ln(t+3) y= 1/t+5


y=x^2, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences