Sketch the curve y=x^2-x-6

This curve is a quadratic due to the highest power in the equation being two. Quadratics typically have the shape of a U. Due to the coefficient of the x^2 term being positive, the curve is increasing for larger values of x. To find where the curve crosses the x-axis we equate the equation to zero and factorise. This results in (x-3)(x+2)=0 so the curve crosses the x-axis at either 3 or -2. This is because for the equation to be true, either x-3=0 or x+2=0. The graph crosses the y-axis when x=0, therefore at -6. The minimum of the graph can be found by completing the square. Hence y=(x-1/2)^2-25/4 and so the minimum occurs at (1/2,-25/4).

MA
Answered by Masum A. Maths tutor

5888 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=(t-1)^3, y=3t-8/(t^2), t is not equal to zero. Find dy/dx in terms of t.


How can I remember trig identities?


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


F = 5i + 3j. Find the magnitude and direction of F?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences