The Diagram shows the Triangle PQR. PQ = x cm. PR = 2x cm. Angle QP^R = 30 degrees. The area of the triangle PQR = A cm^2. Show that x = (Squared Root){2A

Area of a Triangle Formula is
A = 1/2 abSINc
Label the sides of the triangle PR = 2x = a PQ = x = b
1/2 (x) 2x (x) x (x) SINc = A = x2 SINc
Rearrange the equation to give
(squared root) { A = x { SINc
QP^R = 30, thereforeQP^R = SIN(30) = 1/2
A divided by 1/2 = 2A
Therefore x = (squared root){2A

Answered by Tutor305386 D. Maths tutor

9346 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is 12x^6 / 7 divided by 4x^2 / 5 ?


Make h the subject of h-36=(3h+18)/i


Solve the simultaneous equations x + y = 2 and x^2 + 2y = 12


Write x^2-4x+9 in the form (x-p)^2+q, where p and q are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences