factorise x^3 + 3x^2 - 13x - 15

For convience we can call the polynomial f(x). Using the fact that the product of the roots of a polynomial equals the constant term, we know that the product of the roots is -15. We can therefore guess a root of the polynomial by considering the value of f(x) when x is a factor of -15, ie. x = 1, 3, 5, 15, -1, -3, -5, -15. f(3) = 27 + 27 - 39 -15 = 0 so we know that 3 is a root of f(x) and so we can deduce that (x-3) is a factor of f(x). Therefore we can write f(x) = (x-3)(x2 + Ax + 5) where A is unknown. To find A we can work out what the coefficient of the x term would be if we expanded the above: 5 + (-3)A = 5 - 3A and comparing this with the x coefficient in the original form of f(x), we know 5 - 3A = -13 and so A = 6. Therefore we have f(x) = (x-3)(x2 + 6x + 5) which we know how to factorise, giving us f(x) = (x-3)(x+5)(x+1)

Answered by Ben I. Maths tutor

4974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


How do I find a stationary point on a curve and work out if it is a maximum or minimum point?


Differentiate with respect to x, y = (x^3)*ln(2x)


Integrate (2x)(e^x)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences