Why do gravitational fields around point masses obey an inverse square law?

We can approach this question using the idea of flux lines. First we consider a sphere with a constant density of flux lines at its surface, as is the case for a point mass. These flux lines all point radially inwards to the surface and are evenly distributed. We know that the surface area of a sphere is proportional to its radius squared (A=4pi*r^2). So, as one moves outwards along a flux line, the area of a shell at that distance increases with the power 2. The idea of flux lines is that the strength of a field at any point is proportional to the density of the flux lines. Since the area over which the field lines are distributed increases with the power 2, the field lines per unit area decreases with the power 2 - thus the field obeys an inverse square law.

JC
Answered by James C. Physics tutor

1628 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


What is the stress in a cylindrical rod of 10.0cm diameter when loaded by 50.0N force at each end?


A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


What are the 'rules' of oscillation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning