Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs

Write y=x2-4x+2k. And m:= (xm, ym) for the coordinates of our vertex. We deduce that x is exactly the value of x for which y'=2x-4=0, because m is a minimum point of y. By solving y'=0, we get x=2=xm, so by plugging it into our initial equation y=x2-4x+2k we obtain ym, which, as it should be, depends on k. That is : ym= (2)2-4(2)+ 2k= 2k-4. So we can now write : m:= (xm, ym)= ( 2, 2k-4). Now we are ready to discuss xm and y as k varies, in particular we distinguish three cases: (i) ym= 2k-4=0, from which follows k=2 and so m:= (xm, ym)= ( 2, 0). This means that m lies on the x-axis and that our parabola intersects the y-axis at (0, 2k)=(0,4), we sketch this and we deduce that this case corresponds to =x2-4x+2k= 0 having just one solution, namely x=2. We note that this is the same as putting b2-4ac=0, where a,b and c are coefficients of ax2+bx+c.(ii)ym= 2k-4>0, from which follows k>2 and so m:= (xm, ym)= ( 2, ym>0). This means that m lies on the first quadrant and that our parabola intersects the y-axis at (0, 2k > 4), as k>2, we sketch this and we deduce that this case corresponds to x2-4x+2k= 0 not having solutions. We note that this is the same as setting b2-4ac<0, where a,b and c are coefficients of ax2+bx+c. (iii) ym= 2k-4<0, from which follows k<2 and so m:= (xm, ym)= ( 2, ym< 0). This means that m lies on the fourth quadrant and that our parabola intersects the y-axis at (0, 2k < 4 ), as k<2, we sketch this and we deduce that this case corresponds to x2-4x+2k= 0 having two solutions. We note that this is the same as setting b2-4ac > 0, where a,b and c are coefficients of ax2+bx+c. 

MV
Answered by Massimiliano V. Maths tutor

2723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive from the standard quadratic equation, the form of the quadratic solution


Integral of 1/(x^3 + 2x^2 -x - 2)


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences