A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.

While conceptually simple, drawing on understanding of kinematic equations and vectors, these projectile problems require attention to the details of the problem such as accounting for the launch height and taking care with the direction of acelleration. The launch should be solved using a vector diagram to separate the horizontal and vertical components of velocity (14.09 & 5.13 m/s). The time at which the ball changes direction is t=v/g=0.52 s and the maximum height comes from s=ut+0.5gt^2 (gives 1.34m travelled vertically + 1m = 2.34m). The falling section of the calculation follows from this, using the same kinematic equation but this time u=0 and solving for t (0.69s).Having solved the vertical components of the problem the distance travelled can simply be obtained using s=ut, remembering to use the total time of rising and falling (giving 17.05m).

AL
Answered by Andrei L. Physics tutor

3357 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

Why does time slow down for someone standing at the bottom of a mountain compared to time for someone at the top of a mountain?


In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


A tall 2 meter tall basketball player shoots for the net that stands 3 meters from the ground. If he throws he ball from head height at an angle of 60 degrees and the ball travels at 10 meters per second, how far away is the hoop?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning