Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.

The photoelectric effect is the emission of electrons from a metal surface when light is incident on it. When a photon (a light particle) hits the metal surface, it interacts with the metal's electrons. The energy of the photon is absorbed by the electron and if the energy is larger than some threshold energy ( the metal's work function) then the electron has enough energy to escape the metal's surface. Because this interaction is one to one, only the photon energy will determine the kinetic energy of the emmited electrons. The intensity of the light (determined by the number of photons) will not affect the kinetic energy of the electrons, only the number of electrons emmited. This means that low energy light (longer wavelengths) may not cause a metal to emmit electrons even if the intensity is very high, while high energy light (shorter wavelengths) could cause a metal to emmit electrons even if the intensity low.

JL
Answered by Jaime L. Physics tutor

3191 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How, given the threshold frequency and the kinectic enery of a photon, do you determine the frequency of the phton?


A nucleus of the stable isotope Pb(208,82) has more neutrons than protons. Explain why there is this imbalance between proton and neutron numbers by referring to the forces that operate within the nucleus.


A small ball is projected with speed 15 m/s at an angle of 60 degrees above the horizontal. Find the distance from the point of projection of the ball at the instant when it is travelling horizontally.


What is a potential divider?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences