Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) Differentiate again: 12x2+16x-4(2 marks) Evaluate the twice differentiated equation at each turning point to determine their nature: x=1: minimum ; x=-1: maximum ; x=-2: minimum

EB
Answered by Elizabeth B. Maths tutor

3324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2


Find the indefinite integral of sin(x)*e^x


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Integrate (sin(2x) + e^(2x+3))dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning