Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points

Stationary points are points where the gradient of a function is equal to 0. In this question the product rule can be used to find the gradient of the given function. The product rule is given by u'v+uv'= (uv)' and so the differential in this question is (1)(x^2+3x+1)+(x-3)(2x+3). Setting this equal to 0 we can rearrange to get (x^2+3x+1)=-(x-3)(2x+3). We then expand the brackets on the right hand side of the equation. (x^2+3x+1)=-(2x^2-6x+3x-9) = (-2x^2+3x+9). Cancelling terms and reaaranging for x we can find the number of stationary points. 3x^2 = 8 -> x = (8/3)^1/2, as we know that a positive number always has two roots (one positive and one negative) we can see that there are two stationary points at +/- (8/3)^1/2. These x coordinates are then substituted into the original equation to give the y coordinate of the stationary point.

JR
Answered by Joe R. Maths tutor

3509 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x)=x^2log(2x)


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


How do I find the reultant force acting on an object sitting on a slope?


A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning