Please expand the brackets in the following equation to get a quadratic equation. Then, please show using the quadratic formula that the solutions to the equation are x=3 and x=5. Here is the starting equation: (x-3)(x-5)=0

(X-3)(x-5)=0Use F.O.I.LFirst x multiplied by x gives x2outer x multiplied by -5 gives -5xinner x multiplied by -3 gives -3xlast -5x-3 gives +15combining we get x2-8x+15=0the quadratic equation ax2+bx+c=0 has solutions (-b+-sqrt(b2-4ac))/2a, or (8+-sqrt(64-60))/2=(8+-2)/2=5 and 3.

JG
Answered by Jacob G. Maths tutor

3741 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify (48)^(1/2)


Expand: (x+3)(2x+4)


Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.


The numbers a,b,c and d satisfy the equations: a+2b+3c+4d=k and 4a=3b=2c=d. What is the smallest value of k for which a,b,c and d are positive integers?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning