Solve the following simultaneous equations: 2y = 8x + 6 // x = 3y + 7

First we must try to write y as a function of x, in this case it means halving the first equation so that we find that y = 4x + 3. Once we have dicovereved this. We can now write the y in our second equation in terms of x as we just found. The second equation no would read: x = 3(4x+3) + 7 Now we expand the brackets to find that x = 12x + 9 + 7 or x = 12x + 16. This can be rearranged to the form -11x = 16 and from this we can solve for x. x = -16/11 We can then plug this into our first equation to find y.Giving us 2y = 8(-16/11) + 6 looking to find just y means we halve the whole ting to find that y = 4(-16/11) + 3 which gives us y = -31/ 11. We have now solved the whole thing giving us x = -16/11 and y = -31/11.

AH
Answered by Andrew H. Maths tutor

3371 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A scalene triangle ABC has side lengths AB=6cm, BC=4cm, and AC=x cm. The angle A, opposite BC, is 40 degrees and the angle B, opposite AC, is 50 degrees. State the sine rule and use it to find the value of x to 3 s.f.


If two linear equations, y = x + 4 and y = 2x + c, intersect at x = 1, find c.


A ball of mass m is thrown with velocity of (7i + 4j) m/s from a height of 1m. After some time it hits the ground. Find the: a) ball's maximum height b) speed it hits the ground c) distance travelled


Solve 5x - 2 > 3x + 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning