Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))

Have a picture of full working with annotation to go through during interview.Here is rough outline:y = cosh-1(x)x = cosh(y)x = (ey+e-y)/22x = ey+e-yey+e-y -2x = 0Turn into hidden quadratic by multiplying by eye2y-2xey+1=0By quadratic formula:ey = x +/- sqrt(x2-1)Take positive root in order to make inverse function 1 to 1.y = ln(x + sqrt(x2-1)

Related Further Mathematics A Level answers

All answers ▸

Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


Find the square roots of 2 + isqrt(5)


Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences