f(x) = (sin(x))^3. What is f'(x)

Write sin3(x) as sin2x*sinx and differentiate using product rule, u=sin2x, v=sinx, du/dx=2sinxcosx, dv/dx=cosx where the product rule is u(dv/dx) + v(du/dx). This gets 2sin2xcosx + sin2xcosx = 3sin2xcosx which is the correct answer

Answered by Liam R. Maths tutor

2718 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.


The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


How do I know which SUVAT equation to use?


Why does a 'many to one' function not have an inverse?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences