Given that y = 5x^3 + 7x + 3, find dy/dx

This is an example of differentiation. With differentiation the key rule that allows us to differentiate most algebraic functions is "times the coefficient by the power then decrease the power by one". For example, our first term is 5x^3 and this becomes 15x^2 because we multiply 5 (the coefficient) by 3 the (power) and then decrease the power from 3 to 2 . We then look at the next term 7x and it becomes 7 as the power is 1 and the coefficient is 7 so multiplying them both together will give us 7 and when we decrease the power to 0 from 1. Finally, for our last term the power is effectively 0 as there is no x value so any number times 0 is just 0. Therefore, dy/dx = 15x^2 + 7.

TT
Answered by Tej T. Maths tutor

5346 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


Express square root of 48 in the form n x square root of 3 , where n is an integer


How do I find the points of intersection between two curves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning