What evidence is there to support the delocalised model of benzene over Kekulé's model?

Bond lengths - a single bond is 0.153nm while a double bond is 0.134nm, making Kekulé's model of alternating single and double bonds asymmetric. Other evidence shows benzene to be symmetrical so it cannot have this combination. Instead, all bonds are 0.139nm.
Enthalpy change of hydrogenation - if cyclohexene is hydrogenated, the enthalpy change for adding hydrogen across 1 double bond is -120kJ/mol. If benzene has 3 double bonds, it should have an enthalpy change of -360kJ/mol (3x120). However, when benzene is hydrogenated, it releases -208kJ/mol, showing it to be more stable than Kekulé's structure. This supports the theory of a delocalised electron ring as this electronic structure stabilises the molecule.
Resistance to reaction - benzene will not react with halogens or strong acids, or take part in addition reactions so it does not react like an alkene. This suggests that C=C double bonds are not present.

KF
Answered by Katherine F. Chemistry tutor

42760 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

20cm3 of 0.5moldm-3 of HCL is diluted by adding 15cm3 of water. This diluted solution is titrated against a 0.3moldm-3 solution of NaOH. What is the volume of the NaOH in cm3 required to reach the endpoint of the titration?


What is a transition metal complex?


Explain why the structure of benzene cannot be acurately described using Kekule's structure (cyclohexa-1,3,5-triene).


In terms of Electrostatic Forces, Suggest why the ‘Electron Affinity’ of Fluorine has a Negative value.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning