Simplify the fraction 54x^(6)y^(13)/6x^(3)y^(9).

We can treat the numbers (coefficients) 54/6 as one separate fraction to be multiplied by what we get when we've simplified the x's and y's. So first we do 54/6 to get 9, which we'll multiply the rest of the answer by.Next, recall that when dividing powers with the same base, we take away the index in the denominator from the index in the numerator. So, thinking of x^(6)y^(13)/x^(3)y^(9) as x^(6)/x^(3) multiplied by y^(13)/y^(9), we get x^(3) multiplied by y^(4).Then we put the coefficient from before back on to get 9x^(3)y^(4).

LK
Answered by Leo K. Maths tutor

3257 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 51% of 400


Expand and simplify the following equation 5a(4b - 3) - 2a(6 + b)


(i) Find the point(s) where the curve y=x^2-2x+1 crosses the x-axis, and (ii) find the coordinates of the vertex of the curve.


Henry invest £8000 in youtube at a compound interest rate of 2% per year. He wants to earn more than £500 interest. Work out the least time, in whole years, that this would take?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning