Where does the geometric series formula come from?

Rearranging the terms of the series into the usual "descending order" for polynomials, we get a series expansion of:  

axn-1 +........ax + a

A basic property of polynomials is that if you divide xn – 1 by x – 1, you'll get:

xn–1 + xn–2 + ... + x3 + x2 + x + 1

That is: 

a(xn–1 + xn–2 + ... + x3 + x2 + x + 1) = a(xn-1)/(x-1)

The above derivation can be extended to give the formula for infinite series, but requires tools from calculus. For now, just note that, for | r | < 1, a basic property of exponential functions is that rn must get closer and closer to zero as n gets larger. Very quickly, rn is as close to nothing as makes no difference, and, "at infinity", is ignored. This is, roughly-speaking, why the rn is missing in the infinite-sum formula.

NA
Answered by Naheem A. Maths tutor

4667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


How would you differentiate the term 3x^3-2x^2+x-10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning