Differentiate (2^x)(5x^2+5x)^2.

This is a relatively difficult equation to differentiate as there are various parts to consider.Firstly, we will let u=2^x and v=(5x^2+5x)^2 in the product rule. Then the differential of u is (2^x)ln(2). We must remember how to differentiate exponential here where the exponent is a variable.Then the differential of v is 2(10x+5)(5x^2+5x) by using the chain rule. If we substitute the correct values into the product rule equation we get an answer of
2(2^x)(10x+5)(5x^2+5x)+(2^x)ln(2)(5x^2+5x)^2.
No need to simplify this.

GH
Answered by George H. Maths tutor

3467 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


Differentiate with respect to x: y = ln(x^2+4*x+2).


differentiate tanx


Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning