Differentiate (2^x)(5x^2+5x)^2.

This is a relatively difficult equation to differentiate as there are various parts to consider.Firstly, we will let u=2^x and v=(5x^2+5x)^2 in the product rule. Then the differential of u is (2^x)ln(2). We must remember how to differentiate exponential here where the exponent is a variable.Then the differential of v is 2(10x+5)(5x^2+5x) by using the chain rule. If we substitute the correct values into the product rule equation we get an answer of
2(2^x)(10x+5)(5x^2+5x)+(2^x)ln(2)(5x^2+5x)^2.
No need to simplify this.

Answered by George H. Maths tutor

3091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y


Find the coordinates of the maximum stationary point of the y = x^2 +4x curve.


How do I find the co-ordinates of a stationary point of a given line and determine whether it is a minimum or a maximum point?


Can I take a derivative at x=0 for the function f(x) = |x| ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences