Differentiate (2^x)(5x^2+5x)^2.

This is a relatively difficult equation to differentiate as there are various parts to consider.Firstly, we will let u=2^x and v=(5x^2+5x)^2 in the product rule. Then the differential of u is (2^x)ln(2). We must remember how to differentiate exponential here where the exponent is a variable.Then the differential of v is 2(10x+5)(5x^2+5x) by using the chain rule. If we substitute the correct values into the product rule equation we get an answer of
2(2^x)(10x+5)(5x^2+5x)+(2^x)ln(2)(5x^2+5x)^2.
No need to simplify this.

Answered by George H. Maths tutor

3087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate y=(4+9x)^5 with respect to x?


The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.


Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.


y = 4x / (x^2 + 5). Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences