Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).

Firstly, recognise the relevant equations. The two functions are y = mx and y = ln(x). As the straight line is a tangent, we know that at a certain point x0, the functions and their gradients are equal. Thus mx0 = ln(x0) [1], and by differentiating, m = 1/x0 [2]. [2] can be subbed into [1] to give 1 = ln(x0), and so by rearranging, x0 = e. This gives the point of intersection as (e, 1). By simply using gradient = rise/run, we can see that the equation of the desired line is given by y = e-1x.

PS
Answered by Paul S. Maths tutor

7170 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate y=(4+9x)^5 with respect to x?


Find dy/dx for y=x^2 * sin(x)


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning