Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).

Firstly, recognise the relevant equations. The two functions are y = mx and y = ln(x). As the straight line is a tangent, we know that at a certain point x0, the functions and their gradients are equal. Thus mx0 = ln(x0) [1], and by differentiating, m = 1/x0 [2]. [2] can be subbed into [1] to give 1 = ln(x0), and so by rearranging, x0 = e. This gives the point of intersection as (e, 1). By simply using gradient = rise/run, we can see that the equation of the desired line is given by y = e-1x.

Answered by Paul S. Maths tutor

6023 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you do algebraic long division?


How do you differentiate a^x?


Factorize completely x^3 - 6x^2 + 11x - 6


Find the equation of the tangent to the circle (x-3)^2 + (y-4)^2 = 13 that passes through the point (1,7)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences