Solve 5(x+3) < 60

Our technique here will be the same used to solve the problem 5(x+3) = 60, but we must take care at each step to decide whether our inequality changes direction.Firstly, we expand the brackets to give 5x + 15 < 60.We now subtract by 15 on both sides, leaving the inequality fixed since addition and subtraction do not change the direction of the inequality.We then have 5x < 45.To solve for x we will divide by 5. Since 5 is positive, the inequality is unchanged.Our solution is therefore x < 9.We could instead have divided by the 5 throughout initially, and solved x + 3 < 12. This is dependent on how the pupil prefers to do the algebra.We could also attempt to represent the problem graphically, plotting the lines y = 5x + 15 and y = 60, finding their point of intersection, and from there deciding for which values of x our inequality holds. This may be a preferred method for pupils who like to visualise problems more physically.

AB
Answered by Arron B. Maths tutor

15723 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

You are asked to choose from the meal deal at school, there are 9 varieties of sandwich, 6 varieties of snack and 8 varieties of drink. The meal deal consists of a sandwich, snack and drink - how many different combinations of meal deal are there?


A stationary ball starts rolling down a hill, and after 5s it reaches a speed of 12m/s. From here the ground levels off, and the ball continues at this speed for 3 more seconds. Plot this on a velocity-time diagram.


Find the equation of the straight line which passes through the points (5, 0) and (6, 4).


How do I apply the correct formulae and other methods to difficult looking questions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning