Solve x^2 + 8x +3 = 0 by completing the square.

Using the completing the square method:

1. Notice (x+4)2 = x2 + 8x +16 which differs from the question by a constant

2. So we can write: 

x2 + 8x + 3 = (x+4)2 - 13      (check this yourself if you don't see it immediately)

3. So from the question we get:

(x+4)-13 = 0

(x+4)= 13     (by adding 13)

x+4 = +-sqrt(13)    (square root remembering to include the +-)

x = -4 +-sqrt(13)      (subtracting 4)

So we have answers of:

x = - 4 + sqrt(13)

x = - 4 - sqrt(13)

which can both be checked by substitution into the original equation.

Answered by Tutor21349 D. Maths tutor

18796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences