A curve has equation y = 4x + 1/(x^2) find dy/dx.

As in every case dy/dx can be found by differentiating each term individually with respect to x.

Let's first tackle the 4x term.

As always the derivative can be found by multiplying the term by the power of x and reducing the power of x by 1. i.e. axb -> abxb-1

In this case b is simply equal to 1 because x=x1. Therefore the derivative of 4x with respect to x is given by 14x= 41 = 4.

Next let's tackle the 1/x2 term.

In order to use the same method as previously we must first write 1/xas a power of x i.e. in the familiar form axb.

From the laws of indices: recall that x-b=1/xb. In this example b is simply equal to 2 so 1/x2=x-2.

Now that we have written the term in the form axb we can apply the same method as previously i.e.   x-2-> -2x-3.

Finally collecting both the terms we have arrived at the result that dy/dx is -2x-3+4.

Answered by Callum H. Maths tutor

8813 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


What's the point of Maths?


y = x^x, find y'


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences