A curve has equation y = 4x + 1/(x^2) find dy/dx.

As in every case dy/dx can be found by differentiating each term individually with respect to x.

Let's first tackle the 4x term.

As always the derivative can be found by multiplying the term by the power of x and reducing the power of x by 1. i.e. axb -> abxb-1

In this case b is simply equal to 1 because x=x1. Therefore the derivative of 4x with respect to x is given by 14x= 41 = 4.

Next let's tackle the 1/x2 term.

In order to use the same method as previously we must first write 1/xas a power of x i.e. in the familiar form axb.

From the laws of indices: recall that x-b=1/xb. In this example b is simply equal to 2 so 1/x2=x-2.

Now that we have written the term in the form axb we can apply the same method as previously i.e.   x-2-> -2x-3.

Finally collecting both the terms we have arrived at the result that dy/dx is -2x-3+4.

Answered by Callum H. Maths tutor

9145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent line to the graph of y=2x^4-7x^3+x^2+3x when x=5


Differentiate y = 2xln(x)


A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.


Given the intensity of A-Level studies, what is the best way one can go about ensuring all tasks are completed in time?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences