How do I predict the shape of a molecule?

Step 1: Using the periodic table, find how many electrons are in the outer shell of the central atom. Step 2: Add one electron for every other atom that the central atom is bound to. Step 3: Look at the net charge on the molecule add n electrons for a molecule with charge= -n. Step 4: Divide by 2 to give the number of electron pairs around the central atom. Step 5: Find the arrangement of electron pairs which minimises their repulsion.
Using water as an example (H2O). Oxygen is in group 6 so start with 6 electrons. It has 2 Hydrogen atoms bound so +2 electrons. It has no net charge. Total electrons = 6+2 = 8 electrons. So electron pairs = 8/2 = 4 electron pairs around the central oxygen atom. This means the shape of the molecule will be based on a tetrahedral arrangement of electron pairs ( bond angle = 109.5), however only two of these pairs are covalent bonds, the other two are lone pairs so the molecule has a bent shape. Lone pair - Lone pair repulsion is greater than bonding pair repulsion so the bond angle is actually = 104.5

Related Chemistry A Level answers

All answers ▸

a sample of hydrated NiSO4 witha mass of 4.414g is heated to remove all water crystallisation. The resultant mass is 2.287g. How many H2O molecules to each NiSO4 were there in the original sample


Describe how to perform a flame test to identify an unknown compound.


Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, NH3.


What is electronegativity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences