Work out the area of this triangle given the lengths of 1 sides (a) and 2 angles (A and B) using either the sine rule

We know the area of any triangle is equal to 0.5abSin(C). This means we need to find the length of side b and the angle C.First we can work out the angle C of the triangle as we know the angles in a triangle add up to 180 degrees. Say we have angle A is 35 and angle B is 70. This means angle C is 180 - (35 + 70). Next we can use the sine rule to calculate the value of side b. Say side a = 5cm. The rule is a/Sin(A) = b/Sin(B) = c/Sin(C). Substituting in the values we have we can say 5/Sin35 = b/Sin70. Rearrange to get b = 5Sin70/Sin35.
Therefore the area of the triangle = 0.5 * 5 * 5sin70/sin35 * sin 75

RA
Answered by Risha A. Maths tutor

4182 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make "a" the subject of the following equation: 2b = (3a+4)/(c-a)


Here is a right-angled triangle (base = 8cm and height = 9cm) and a rectangle (length = 16cm). The area of the rectangle is 6 times the area of the triangle. Work out the width of the rectangle.


How do you solve an equation like: 5/(x+2) + 3/(x-3) = 2?


Given a spinner divided in 3 sections numbered 1, 2 and 3, and that the arc of section 2 is double that of section one (~57.6 cm), calculate pi to 2 decimal places. The radius of the spinner is 30cm and the angle sub-intended by section 3 is 30 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning