How do you differentiate using the chain rule?

At first the chain rule can seem quite daunting and convoluted but with a few examples over the course of this lesson, it will seem simpler and more intuitive.
The chain rule is used where the equation that one is looking to differentiate is a function that is itself raised to a power. For example, y = (3x - 2)^4 which needs to be differentiating with respect to x to give dy/dx.
What methods can be applied in order to answer this question?We could multiply this function out to give a full equation, but this can be messy, especially if the outside power (4 in the above example) is highThe alternative (and superior) method is to use the chain rule in order to work out the answer
NB. - when using the chain rule, a substitution is used to turn the expression into something that can be differentiated. For example, y= (3x-2)^4We already know (assumed here if discussing chain rule) how to differentiate x^4, so we use the substitution u = (3x-2) to turn the function into something that can be differentiated. This gives: y = (3x-2)^4Let u = (3x-2)to give us: y = u^4 dy/du = 4u^3
The only problem is that we want dy/dx, not dy/du and this is where we see the chain rule.The chain rule says that: dy/dx = dy/du x du/dx
So all we need to do is multiply dy/du by du/dx As u = 3x-2, du/dx = 3, sody/dx = 4u^3 x 3 = 12u^3 = 12(3x-2)^3
So, in summary, when using the chain rule:Express the original function as a simpler function of u, where u is a function of xDifferentiate the two functions you now haveMultiply the derivatives together, leaving your answer in terms of the original question (i.e. - in x's rather than u's)
Further practice:Differentiate with respect to x the following:y = sin(5x)y = 2e^(2x+1)

Answered by Alex K. Maths tutor

2519 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


How do you intergrate ln(x)?


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences